IX CONCURSO DE PRIMAVERA DE MATEMÁTICAS

<u>2^a FASE</u>: Día 23 de abril de 2005

NIVEL IV (Bachillerato)

iii Lee detenidamente las instrucciones !!!

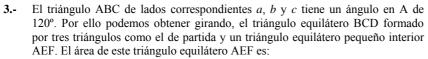
Escribe ahora tu nombre y los datos que se te piden en la hoja de respuestas

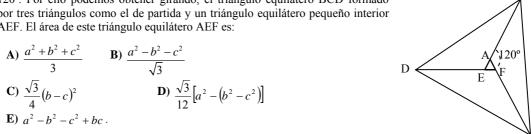
- * No pases la página hasta que se te indique.
- * Duración de la prueba: 1 HORA 30 MINUTOS.
- * No está permitido el uso de calculadoras, reglas graduadas, ni ningún otro instrumento de medida.
- * Es difícil contestar bien a todas las preguntas en el tiempo indicado. Concéntrate en las que veas más asequibles. Cuando hayas contestado a esas, inténtalo con las restantes.
- * No contestes en ningún caso al azar. Recuerda que es mejor dejar una pregunta en blanco que contestarla erróneamente:

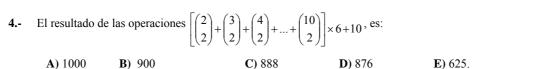
Cada respuesta correcta te aportará
Cada pregunta que dejes en blanco
Cada respuesta errónea

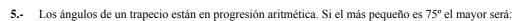
5 puntos
2 puntos
0 puntos

- * MARCA CON UNA CRUZ (X) EN LA HOJA DE RESPUESTAS LA QUE CONSIDERES
- * SI TE EQUIVOCAS, ESCRIBE "NO" EN LA EQUIVOCADA Y MARCA LA QUE CREAS CORRECTA.

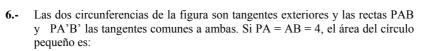

CONVOCA:

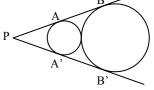

Facultad de Matemáticas de la U.G.M.

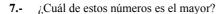

COLABORAN:


Consejería de Educación de la Comunidad de Madrid Ediciones S.M., Grupo ANAYA y El Corte Inglés

1	Dado un cubo de lado 1 m, formamos un triángulo equilátero tomando como vértices los extremos de la diagonal de una cara y otro de los extremos de la diagonal no paralela de la cara opuesta. ¿Cuál es, en m², el área de ese triángulo?								
	A) $\frac{1}{2}$	B) $\frac{\sqrt{3}}{4}$	C) $\frac{\sqrt{2}}{4}$	D) $\sqrt{3}$	E) $\frac{\sqrt{3}}{2}$.				
2	El valor de $cotg \ 10^o + tg \ 5^o$ es igual que								
	A) cosec 5° B) cosec 10°		C) sec 5° D) sec 10°	E) sen 15°.					







A) y = x + 1 **B)** y = 2x + 3 **C)** y = 3x - 8 **D)** y = -3x

В

A) 1,44
$$\pi$$
 B) 2 π C) 2,56 π D) $\sqrt{8} \pi$ E) 4 π .

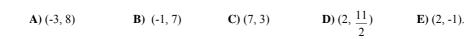
A) 0

A) 4,5

B) 6

A)
$$\sqrt{\sqrt[3]{5 \times 6}}$$
 B) $\sqrt{6 \times \sqrt[3]{5}}$ **C)** $\sqrt{5 \times \sqrt[3]{6}}$ **D)** $\sqrt[3]{5 \times \sqrt{6}}$ **E)** $\sqrt[3]{6 \times \sqrt{5}}$.

¿Cuál de las siguientes rectas es tangente a $y = x^2 - 3x + 1$?


B) 2

10.- En un triángulo MNP, el baricentro es G (1, 6) y el punto medio T, del lado NP, tiene coordenadas (3, 5). ¿Cuáles son las coordenadas de M?

D) 4

E) Infinitas.

E) 8.

C) 3

11.- Un triángulo cuyos lados vienen dados por números enteros tiene de perímetro 8. ¿Cuál es el área?

A)
$$2\sqrt{2}$$
 B) $\frac{16}{9}\sqrt{3}$ **C)** $2\sqrt{3}$ **D)** 4 **E)** $4\sqrt{2}$.

12.- Sea a > 0, si $a^{0,30} = 2$ y $a^{0,48} = 3$, entonces $a^{0,66}$ sería igual a:

C) 8,1

13.- ¿Cuál de los siguientes puntos pertenece a una de las bisectrices de las rectas
$$r: 3x + 4y = 5$$
 y $s: y = 0$?

D) 5

A)
$$(1, 1)$$
 B) $(0, 0)$ **C)** $(1, 2)$ **D)** $(2, 1)$ **E)** $(2, -1)$.

14	La suma $1 + (1+i) + (1+i)^2 + (1+i)^3 + (1+i)^4 + (1+i)^5$ es igual a:								
	A) 1 _{270°}	B) 8 <i>i</i>	C) $-8 + i$	D) 8 - <i>i</i>	E) $\frac{7}{i}$.				
15	¿Cuántas cifras distintas tiene el resultado de la siguiente suma? 1 + 12 + 123 + 1234 + 12345 + 123456 + 1234567 + 12345678 + 123456789								

16.- Si
$$1^2 + 3^2 + 5^2 + \dots + 99^2 = S$$
, ¿cuánto suma $2^2 + 4^2 + 6^2 + \dots + 100^2$?

C) siete

A) nueve

B) ocho

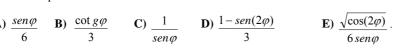
A)
$$S + 2550$$
 B) $2S$ C) $4S$ D) $S + 5050$ E) $S + 5075$.

D) seis

E) cinco.

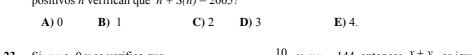
17.- ¿Cuántos números de tres cifras abc verifican que ellos y cba son cuadrados perfectos? A) siete B) seis C) cinco D) cuatro E) tres.

18.- En un triángulo *ABC*,
$$a = 8$$
, $b = 5$, y $\cos \hat{C} = \frac{3}{5}$. El área es:

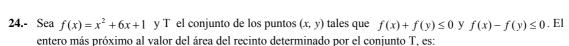

A) 16 **B)** 18 **C)** 20 **D)** 21 **E)** 25.

19.- Sabiendo que $\cos \alpha = \frac{4}{5}$ y que α está en el primer cuadrante, el sen 4α es:

A)
$$\frac{48}{625}$$
 B) $\frac{60}{625}$ C) $\frac{196}{625}$ D) 1 E) $\frac{336}{625}$.


20.- Tenemos cuatro números enteros y si los sumamos de tres en tres obtenemos los siguientes resultados: 180, 197, 208 y 222. ¿Cuál es el mayor de los cuatro números?

21.- Considera una pirámide PABCD cuya base ABCD es un cuadrado y el vértice P equidista de los puntos A, B, C y D. Si AB = 1 y el ángulo $A\hat{P}B = 2\varphi$, el volumen de la pirámide es:


22.- Para cada entero positivo n, sea S(n) la suma de sus dígitos. ¿Cuántos enteros positivos *n* verifican que n + S(n) = 2005?

B) $13\sqrt{3}$

23.- Si x,y > 0 y se verifica que $\log_y(x) + \log_x(y) = \frac{10}{3}$ y $x \cdot y = 144$, entonces $\frac{x+y}{2}$ es igual a: **A)** $12\sqrt{2}$

C) 24

D) 30

E) 36.

A) 21 **B**) 22 **C**) 23 **D**) 24

25.- ¿Cuántos pares ordenados de números reales
$$(a, b)$$
 verifican que $(a + bi)^{2005} = a - bi$?

A) 0 **B)** 2 **C)** 1001 **D)** 2005 **E)** 2007.