VII CONCURSO DE PRIMAVERA DE MATEMÁTICAS

<u>1^a FASE</u>: Día 26 de febrero de 2003

NIVEL IV (1° y 2° de Bachillerato)

iii Lee detenidamente las instrucciones !!!

*Escribe ahora los siguientes datos:

Apellidos	Nombre		
Colegio o Instituto	Curso	Año de nacimiento	

- * No pases la página hasta que se te indique.
- * Duración de la prueba: 1 HORA 30 MINUTOS.
- * No está permitido el uso de calculadoras, reglas graduadas, ni ningún otro instrumento de medida.
- * Es difícil contestar bien a todas las preguntas en el tiempo indicado. Concéntrate en las que veas más asequibles. Cuando hayas contestado a esas, inténtalo con las restantes.
- * No contestes en ningún caso al azar. Recuerda que es mejor dejar una pregunta en blanco que contestarla erróneamente:

- * RODEA LA LETRA CORRESPONDIENTE A LA RESPUESTA QUE CONSIDERES CORRECTA.
- * SI TE EQUIVOCAS, ESCRIBE "NO" EN LA EQUIVOCADA Y RODEA LA QUE CREAS CORRECTA.

CONVOCA:

Facultad de Matemáticas de la U.G.M.

COLABORAN:

Consejería de Educación de la Comunidad de Madrid Ediciones S.M. y Grupo ANAYA

la	hipotenusa A	C y resulta que	el triángulo B	CD tiene todos	
su		s a 1. ¿Cuánto 1			B
	A) 1; E	3) $\frac{3}{2}$; C) $$	$\sqrt{2}$; D)	$\sqrt{3}$; E) 2	
pu pu to	intuación intuación med tal de todos lo irticipantes era	media de las o ia de los chico s participantes o in chicas?	chicas que se es que se prese de ese centro	entaron fue de 7 fue de 80 punto	de 83 puntos y la 1 puntos. Si la media s, ¿qué porcentaje de los
	A) 60%;	B) 65%;	C) 70%;	D) 75%;	E) 80%.
	oducto <i>abcdej</i>	?			9, ¿cuánto vale el
	A) 1;	B) 2;	C) $\sqrt{6}$;	D) 3;	E) $\frac{10}{3}$
5 El perímetro de un triángulo rectángulo es 40 cm y la suma de los cuadrados de sus lados 578 cm ² . ¿Cuál es la longitud del lado más corto?					
		B) 7;			E) 10.
en					nto en el dominio como D (dominio), ¿cuánto
	A) -1;	B) $\frac{-3}{4}$;	C) $\frac{-2}{3}$;	D) $\frac{-1}{4}$;	E) 0.
7 S		nta el logaritmo			
	$\log \frac{1}{2} + \log \frac{1}{2}$	$\frac{2}{3} + \log \frac{3}{4} + \dots$	$1 + \log \frac{98}{99} + \log \frac{98}{99}$	$g\frac{99}{100}$ es igua	al a:
		_		D) -2;	

1.- Una recta que pasa por los puntos (m, -9) y (7, m) tiene pendiente m. ¿Cuánto vale

D) 4:

E) 5.

C

C) 3;

B) 2;

2.- En un triángulo rectángulo ABC se toma un punto D sobre

8.- Si el perímetro del hexágono regular es de 12 cm, el área

9.- De las siguientes afirmaciones, ¿cuáles son verdaderas?Existe un número primo que es par.

• El número 2⁶⁵+1 es primo.

soluciones reales.

A) 1;

B) 2;

A) $3\sqrt{3}$; B) $6\sqrt{3}$; C) 6; D) $\frac{3\sqrt{2}}{4}$; E) $\frac{9\sqrt{3}}{4}$

• Existen enteros distintos m y n tales que $m^2 = n^3$.

C) 3;

• Algunas ecuaciones de 2º grado, con coeficientes enteros, no tienen

• La ecuación cúbica $x^3 + x^2 + 1 = 0$ tiene una única solución real.

D) 4;

del triángulo equilátero ABC es en cm²:

m?

A) 1;

$z^{2003} + \frac{1}{z^{2003}}$	es igual a:			
A) -2;	B) -1;	C) 0;	D) 1;	E) 2.
 11 El conjunto de los números "a" para los que la desigualdad ax² - 2x + a < 0 se verifica sea cual fuere el número real x, es: A) a < -2; B) a < -2 ó a > 2; C) a < -1; D) a < 0; E) a < -1 ó a > 1 				
12 $\frac{5}{6^{-2} \times 8^{\frac{1}{3}}}$ es i	gual a:			
A) 60;	B) 70;	C) 80;	D) 90;	E) 100.
13 El perímetro de expresada en cn A) 24;	2	o "A". Si $A = 2$	p, ¿cuál es el v	= -
14 Si $x = 11^{\circ}$, el va				
A) $\frac{1}{2}$;	B) $\frac{\sqrt{3}}{2}$;	C) $\frac{1+\sqrt{5}}{2}$	D) 1;	E) 0.
15 La tangente del es:	argumento de o	cualquiera de la	as raíces cuadra	adas del complejo 3+ 4i
A) -1;	B) 2;	C) 1;	D) $\frac{1}{2}$;	E) $\frac{1}{4}$
16 Si la parábola es:	$y = x^2 + 8x + x$	k tiene su vér	tice en el eje d	e abscisas, el valor de k
	B) 4;	C) 8;	D) 16;	E) 24.
17 Sabiendo que $9^{-x} = 7$, ¿cuál es el valor de 27^{2x+1} ?				
A) $\frac{27}{7\sqrt{7}}$;	B) $189\sqrt{7}$;	C) $\frac{343}{27}$;	D) $\frac{7\sqrt{7}}{27}$;	E) $\frac{27}{343}$
18 Si <i>x</i> e <i>y</i> son nún valor de <i>xy</i> es:	neros reales tale	es que $(x^2 - y^2)$	$(x^2 - 2xy + y)$	2) = 3 con $x - y = 1$, el
	B) $1+\sqrt{2}$;	C) $1 - \sqrt{2}$;	D) 1;	E) 0.
 19 Cada una de las afirmaciones siguientes puede ser verdadera o falsa. 1.Las afirmaciones 3 y 4 son ambas verdaderas. 2.Las afirmaciones 4 y 5 no son ambas falsas. 3.La afirmación 1 es verdadera. 4.La afirmación 3 es falsa. 5.Las afirmaciones 1 y 3 son ambas falsas. ¿Cuántas afirmaciones de estas cinco son verdaderas? A) 0; B) 1; C) 2; D) 3; E) 4. 				

10.- Si el número complejo z tiene de módulo 1 y argumento $\frac{\pi}{2003}$, la expresión

20	Hay un teorema, teorema de Wilson, que asegura que si n es un número primo,
	ntonces n es un divisor de $(n-1)! + 1$. Con la ayuda de este teorema puedes
	segurar que el número $12! \times 6! + 12! + 6! + 1$ tiene un divisor d que
	erifica:

D)
$$9300 < d < 9400$$
;

21.- Lanzamos tres dados al aire. ¿Cuál es la probabilidad de que la suma de los aparecidos en dos de ellos, coincida con el del otro dado? números

A)
$$\frac{5}{36}$$
;

B)
$$\frac{1}{6}$$
;

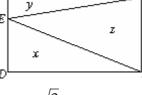
B)
$$\frac{1}{6}$$
; C) $\frac{7}{36}$; D) $\frac{2}{9}$; E) $\frac{5}{24}$.

D)
$$\frac{2}{9}$$
;

E)
$$\frac{5}{24}$$
.

- 22.- Antonio conducía su coche a velocidad constante. A las 14 horas estaba a XYZ km de su casa, donde X, Y, Z son dígitos tales que $X \ge 1$ e Y = 0. A las 14 horas 18 minutos estaba a ZX km de casa y a las 15 horas a XZ km de casa. ¿A qué hora llegó a casa?
 - A) 15 h 10 min;
- B) 15 h 12 min;
- C) 15 h 24 min;

- D) 15 h 30 min;
- E) 15 h 48 min.
- 23.- ABCD es un rectángulo. El punto E es uno cualquiera del lado DC. Llamemos "x" al área del triángulo AED, "y" al área del triángulo BCE y "z" al área del triángulo


ABE. Si $y^2 = xz$, el valor del cociente $\frac{DE}{FC}$ es:

A)
$$\frac{3}{5}$$
; B) $\frac{\sqrt{5}-1}{2}$; C) $\frac{2}{3}$; D) $\frac{\sqrt{5}}{3}$; E) $\frac{\sqrt{3}}{2}$

C)
$$\frac{2}{3}$$
;

D)
$$\frac{\sqrt{5}}{3}$$
;

E)
$$\frac{\sqrt{3}}{2}$$

24.- Si f es una función que verifica $f(xy) = \frac{f(x)}{y}$ para cualesquiera números

positivos x e y y f(500) = 3, ¿cuál es el valor de f(600)?

$$C)\frac{5}{2}$$

A) 1; B) 2; C)
$$\frac{5}{2}$$
; D) 3; E) $\frac{18}{5}$.

25.- Si ordenamos en orden creciente los números sen(1), sen(2) y sen(3) cuando los ángulos vienen medidos en radianes, obtenemos:

A)
$$sen(1) < sen(2) < sen(3)$$
;

B)
$$sen(3) < sen(2) < sen(1)$$
;

C)
$$sen(1) < sen(3) < sen(2)$$
;

D)
$$sen(2) < sen(1) < sen(3)$$
;

E)
$$sen(3) < sen(1) < sen(2)$$
.